42 research outputs found

    A novel gradient based optimizer for solving unit commitment problem

    Get PDF
    Secure and economic operation of the power system is one of the prime concerns for the engineers of 21st century. Unit Commitment (UC) represents an enhancement problem for controlling the operating schedule of units in each hour interval with different loads at various technical and environmental constraints. UC is one of the complex optimization tasks performed by power plant engineers for regular planning and operation of power system. Researchers have used a number of metaheuristics (MH) for solving this complex and demanding problem. This work aims to test the Gradient Based Optimizer (GBO) performance for treating with the UC problem. The evaluation of GBO is applied on five cases study, first case is power system network with 4-unit and the second case is power system network with 10-unit, then 20 units, then 40 units, and 100-unit system. Simulation results establish the efficacy and robustness of GBO in solving UC problem as compared to other metaheuristics such as Differential Evolution, Enhanced Genetic Algorithm, Lagrangian Relaxation, Genetic Algorithm, Ionic Bond-direct Particle Swarm Optimization, Bacteria Foraging Algorithm and Grey Wolf Algorithm. The GBO method achieve the lowest average run time than the competitor methods. The best cost function for all systems used in this work is achieved by the GBO technique

    Economic Load Dispatch problem based on Search and Rescue optimization algorithm

    Get PDF
    The Search and Rescue optimization algorithm (SAR) is a recent metaheuristic inspired by the exploration’s behaviour for humans throughout search and rescue processes. The SAR is applied to solve the Combined Emission and Economic Dispatch (CEED) and Economic Load Dispatch (ELD). The comparative performance of SAR against several metaheuristic methods was performed to assess its reliability. These algorithms include the Earthworm optimization algorithm (EWA), Grey wolf optimizer (GWO), Tunicate Swarm Algorithm (TSA) and Elephant Herding Optimization (EHO) for the same two networks study. Also, the proposed SAR method is compared with other literature algorithms such as Sine Cosine algorithm, Monarch butterfly optimization, Artificial Bee Colony, Chimp Optimization Algorithm, Moth search algorithm. The cases applied in this work are seven cases: three cases of 6-unit for ELD issue, three cases of 6-unit for CEED issue and 10-unit for ELD problem. The evaluation of counterparts is performed for 30 different runs based on measuring the Friedman rank test and robustness curves. Furthermore, the standard deviation, maximum objective function, minimum, mean and values over 30 different runs are applied for a statistical analysis of all used techniques. The obtained results proved the superiority of the SAR in determining the fitness function of ELD and CEED is minimizing the cost of fuel for ELD and emission and fuel costs for CEED

    Frequency selective surfaces-based miniaturized wideband high-gain monopole antenna for UWB systems

    Get PDF
    In the suggested manuscript, an antenna functional over an ultrawide band with a small geometrical configuration and simplified structure is given. The recommended antenna is designed for the Roger 6002, having overall measurements of 40 mm × 30 mm × 1.52 mm. The wideband is obtained after loading stubs and etching slots from the basic antenna design. In order to improve the antenna’s performance further, an FSS sheet is designed. The sheet of FSS is placed behind the antenna to reflect the antenna’s backward radiation and improve antenna gain. In the results, the gain of the antenna improved from 4.5 dBi to 9.5 dBi. The resultant antenna loaded with FSS is capable of operating over UWB ranging from 3.4 to 9.8 GHz with stable gain throughout the functional bandwidth. The hardware model is manufactured and tested to validate the estimated results achieved from HFSS (High Frequency Structure Simulator). Moreover, the recommended work is differentiated in the form of a table with literature. The compact size, wideband, high gain and stable performance of proposed antenna system over-performs the literature work and makes it potential candidate for the UWB system requiring high gain

    Multi-Modal Evolutionary Deep Learning Model for Ovarian Cancer Diagnosis

    No full text
    Ovarian cancer (OC) is a common reason for mortality among women. Deep learning has recently proven better performance in predicting OC stages and subtypes. However, most of the state-of-the-art deep learning models employ single modality data, which may afford low-level performance due to insufficient representation of important OC characteristics. Furthermore, these deep learning models still lack to the optimization of the model construction, which requires high computational cost to train and deploy them. In this work, a hybrid evolutionary deep learning model, using multi-modal data, is proposed. The established multi-modal fusion framework amalgamates gene modality alongside with histopathological image modality. Based on the different states and forms of each modality, we set up deep feature extraction network, respectively. This includes a predictive antlion-optimized long-short-term-memory model to process gene longitudinal data. Another predictive antlion-optimized convolutional neural network model is included to process histopathology images. The topology of each customized feature network is automatically set by the antlion optimization algorithm to make it realize better performance. After that the output from the two improved networks is fused based upon weighted linear aggregation. The deep fused features are finally used to predict OC stage. A number of assessment indicators was used to compare the proposed model to other nine multi-modal fusion models constructed using distinct evolutionary algorithms. This was conducted using a benchmark for OC and two benchmarks for breast and lung cancers. The results reveal that the proposed model is more precise and accurate in diagnosing OC and the other cancers

    Improving Automotive Air Conditioning System Performance Using Composite Nano-Lubricants and Fuzzy Modeling Optimization

    No full text
    This study aims to enhance the effectiveness of automobile air conditioning (AAC) systems through the use of composite nano-lubricants and fuzzy modeling optimization techniques. Composite nano-lubricants, which consist of varied metal oxide ingredients and content ratios, are projected to surpass single-component nano-lubricants in terms of improving the performance of AAC systems. Fuzzy modeling is used to simulate the AAC system based on experimental data using three input parameters: volume concentration of nano-lubricants (%), the refrigerant charge (g), and compressor speed (rpm). The output performance of the AAC system is measured using four parameters: cooling capacity (CC) in kW, compressor work (CW) in kJ/kg, coefficient of performance (COP), and power consumption (PC) in kW. Optimization is performed using the marine predators algorithm (MPA) to identify the best values for the input control parameters. The objective function is to minimize CW, COP, and PC while simultaneously maximizing CC and COP. Results showed that the performance of the AAC system improved from 85% to 88% compared to the experimental dataset, highlighting the potential benefits of using composite nano-lubricants and fuzzy modeling optimization for improving the energy efficiency of AAC systems. Furthermore, a comprehensive comparison with ANOVA was performed to demonstrate the superiority of the fuzzy modeling approach. The results indicate that the fuzzy model outperforms ANOVA, as evidenced by a reduced root mean square error (RMSE) for all data, from 0.412 using ANOVA to 0.0572 using fuzzy. Additionally, the coefficient of determination for training increased from 0.9207 with ANOVA to 1.0 with fuzzy, further substantiating the success of the fuzzy modeling phase

    Optimal Load Sharing between Lithium-Ion Battery and Supercapacitor for Electric Vehicle Applications

    No full text
    There has been a suggestion for the best energy management method for an electric vehicle with a hybrid power system. The objective is to supply the electric vehicle with high-quality electricity. The hybrid power system comprises a supercapacitor (SC) bank and a lithium-ion battery. The recommended energy management plan attempts to maintain the bus voltage while providing the load demand with high-quality power under various circumstances. The management controller is built on a metaheuristic optimization technique that enhances the flatness theory-based controller’s trajectory generation parameters. The SC units control the DC bus while the battery balances the power on the common line. This study demonstrates the expected contribution using particle swarm optimization and performance are assessed under various optimization parameters, including population size and maximum iterations. Their effects on controller performance are examined in the study. The outcomes demonstrate that the number of iterations significantly influences the algorithm’s ability to determine the best controller parameters. The results imply that combining metaheuristic optimization techniques with flatness theory can enhance power quality. The suggested management algorithm ensures power is shared efficiently, protecting power sources and providing good power quality

    A Novel Hybrid Genetic-Whale Optimization Model for Ontology Learning from Arabic Text

    No full text
    Ontologies are used to model knowledge in several domains of interest, such as the biomedical domain. Conceptualization is the basic task for ontology building. Concepts are identified, and then they are linked through their semantic relationships. Recently, ontologies have constituted a crucial part of modern semantic webs because they can convert a web of documents into a web of things. Although ontology learning generally occupies a large space in computer science, Arabic ontology learning, in particular, is underdeveloped due to the Arabic language’s nature as well as the profundity required in this domain. The previously published research on Arabic ontology learning from text falls into three categories: developing manually hand-crafted rules, using ordinary supervised/unsupervised machine learning algorithms, or a hybrid of these two approaches. The model proposed in this work contributes to Arabic ontology learning in two ways. First, a text mining algorithm is proposed for extracting concepts and their semantic relations from text documents. The algorithm calculates the concept frequency weights using the term frequency weights. Then, it calculates the weights of concept similarity using the information of the ontology structure, involving (1) the concept’s path distance, (2) the concept’s distribution layer, and (3) the mutual parent concept’s distribution layer. Then, feature mapping is performed by assigning the concepts’ similarities to the concept features. Second, a hybrid genetic-whale optimization algorithm was proposed to optimize ontology learning from Arabic text. The operator of the G-WOA is a hybrid operator integrating GA’s mutation, crossover, and selection processes with the WOA’s processes (encircling prey, attacking of bubble-net, and searching for prey) to fulfill the balance between both exploitation and exploration, and to find the solutions that exhibit the highest fitness. For evaluating the performance of the ontology learning approach, extensive comparisons are conducted using different Arabic corpora and bio-inspired optimization algorithms. Furthermore, two publicly available non-Arabic corpora are used to compare the efficiency of the proposed approach with those of other languages. The results reveal that the proposed genetic-whale optimization algorithm outperforms the other compared algorithms across all the Arabic corpora in terms of precision, recall, and F-score measures. Moreover, the proposed approach outperforms the state-of-the-art methods of ontology learning from Arabic and non-Arabic texts in terms of these three measures

    Robust Fuzzy Logic MPPT Using Gradient-Based Optimization for PEMFC Power System

    No full text
    In this study, the design of fuzzy logic control (FLC) systems for proton exchange membrane fuel cells (PEMFCs) maximum power point tracking (MPPT) is improved. The improvement is made possible by using a gradient-based optimizer (GBO), which maximizes the FLC systems’ freedom and flexibility while enabling accurate and speedy tracking. During optimization, the parameters of the FLC membership functions are considered choice variables, and the error integral is assigned to be the objective function. The proposed GBO-FLC method’s results are contrasted with those of other computational methods. The results demonstrated that the proposed GBO-FLC beats the other strategies regarding mean, median, variance, and standard deviation. A thorough comparison between the regular FLC and the upgraded FLC was conducted using a variety of scenarios with varied temperatures and water content. The results demonstrate that the suggested FLC-based GBO design provides a dependable MPPT solution in PEMFCs. The advancement of FLC systems through optimizing power generation in fuel cells is made possible by this work, opening the door for more effective and reliable alternative energy sources

    Robust Parameter Identification Strategy for Lead Acid Battery Model

    No full text
    The most popular approach for smoothing renewable power generation fluctuations is to use a battery energy storage system. The lead-acid battery is one of the most used types, due to several advantages, such as its low cost. However, the precision of the model parameters is crucial to a reliable and accurate model. Therefore, determining actual battery storage model parameters is required. This paper proposes an optimal identification strategy for extracting the parameters of a lead-acid battery. The proposed identification strategy-based metaheuristic optimization algorithm is applied to a Shepherd model. The bald eagle search algorithm (BES) based identification strategy provided excellent performance in extracting the battery’s unknown parameters. As a result, the proposed identification strategy’s total voltage error has been reduced to 2.182 × 10−3, where the root mean square error (RMSE) between the model and the data is 6.26 × 10−5. In addition, the optimization efficiency achieved 85.32% using the BES algorithm, which approved its efficiency

    A New Fractional-Order Load Frequency Control for Multi-Renewable Energy Interconnected Plants Using Skill Optimization Algorithm

    No full text
    Connection between electric power networks is essential to cover any deficit in the generation of power from any of them. The exchange powers of the plants during load disturbance should not be violated beyond their specified values. This can be achieved by installing load frequency control (LFC); therefore, this paper proposes a new metaheuristic-based approach using a skill optimization algorithm (SOA) to design a fractional-order proportional integral derivative (FOPID)-LFC approach with multi-interconnected systems. The target is minimizing the integral time absolute error (ITAE) of frequency and exchange power violations. Two power systems are investigated. The first one has two connected plants of photovoltaic (PV) and thermal units. The second system contains four plants, namely, PV, wind turbine, and two thermal plants, with governor dead-band (GDB) and generation rate constraints (GRC). Different load disturbances are analyzed in both considered systems. Extensive comparisons to the use of chef-based optimization algorithm (CBOA), jumping spider optimization algorithm (JSOA), Bonobo optimization (BO), Tasmanian devil optimization (TDO), and Atomic orbital search (AOS) are conducted. Moreover, statistical tests of Friedman ANOVA table, Wilcoxon rank test, Friedman rank test, and Kruskal Wallis test are implemented. Regarding the two interconnected areas, the proposed SOA achieved the minimum fitness value of 1.8779 pu during 10% disturbance on thermal plant. In addition, it outperformed all other approaches in the case of 1% disturbance on the first area as it achieved ITAE of 0.0327 pu. The obtained results proved the competence and reliability of the proposed SOA in designing an efficient FOPID-LFC in multi-interconnected power systems with multiple sources
    corecore